

Operación de Agua Potable Quebrada Caracol, Panama

Clean Water Consulting

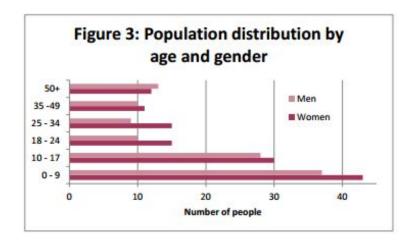
Sarah Stoolmiller (PM)
Michael Cherng
Elizabeth Wohlford
Nick Rademacher

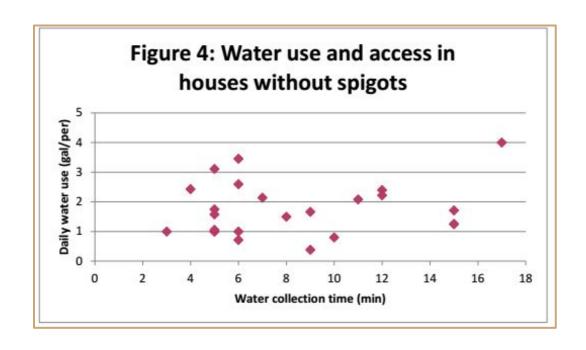
Outline

- Introduction
- O Data Collection
- Final Design
- O Cost Estimate
- Schedule
- Questions

Community Background

Geographic Location


O Quebrada Caracol, Ngöbe-Buglé Comarca, Panama


Community Population

- ∆ 233 residents living in the community
- Education until elementary or middle school
- Seventh Day Adventists

Water Access

Water Collection Sites

Sanitation and Health

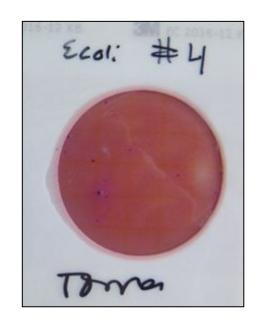
Community Goal	Environmental Health Project Objective
Aqueduct Repair	 Water committees will adopt water system management methods Potable water systems will be rehabilitated
Latrines	Community access to sanitation

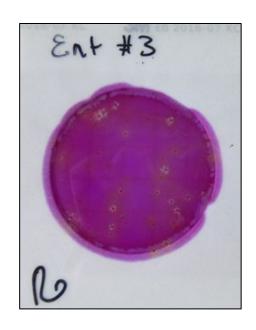
Project Objectives

- O Protect watershed to enhance quality of spring water
 - Spring supplies drinking water to the system
- Rehabilitate water distribution system
 - Update and fix current system
 - Service additional homes

Data Collection and Analysis

Data Collection Objectives


- O Perform water quality analysis
 - Test for types of bacteria in water
- Map the micro-watershed protection
 - Delineate watershed
 - Locate contamination sources
- Evaluate existing distribution system
 - Gravity fed distribution system



Water Quality Data Collection

Water Quality Analysis

		Spring Box			
	Aerobic Bacteria	E. coli/tota	Enterobacteriaceae		
Sample #	Colonies per 1 mL	# of counted E. coli colonies	Total Colonies per 1 mL	Colonies per 1 mL	
1	482	0	11	5	
2	169	0	6	9	
3	96	0	11	14	
4	26	1	13	14	
5	57	0	25	22	
6	44	0	8	35	
7	34	0	31	26	
8	39	0	25	12	
9	19	0	8	10	
10	41	0	23	20	

		R	unoff	
· ·	Aerobic Bacteria	E. coli/tot	Enterobacteriaceae	
Sample #	Colonies per 1 mL	# of counted E. coli colonies	Colonies per 1 mL	Colonies per 1 mL
1	263	0	73	49
2	112	0	87	58
3	56	0	62	58
4	77	1	70	43
5	83	0	80	53
6	2181	0	58	51
7	242	0	60	56
8	130	0	30	55
9	136	0	38	67
10	748	0	41	40

		Potable Water Standards		
		World Health Organization	US Evironmental Protection Agency	Panama Regulations
	Units		9	
	Colonies/1 mL	0	<0.01	0.1
Fecal Coliform (includes E. coli)	Colonies/ 1 mL	0	<0.01	0

Watershed Delineation



Watershed Analysis

- δ Total Area of 55,000 m²
- Peak Discharge = 58.0 L/s
 - Runoff coefficient = 0.62
 - o Intensity = 178 mm/day

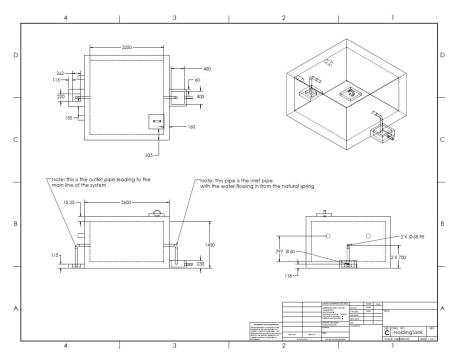
Current Distribution System

Spring Box

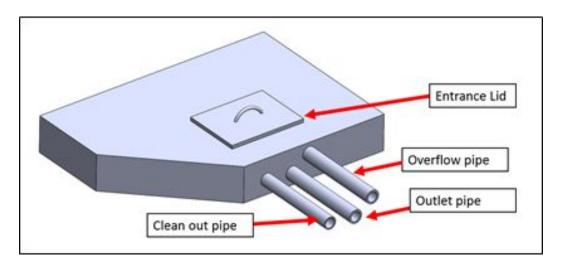
Distribution Line

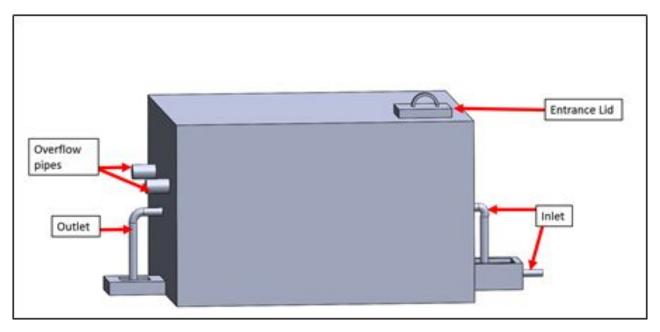
Storage Tank

Chlorination



Outsource

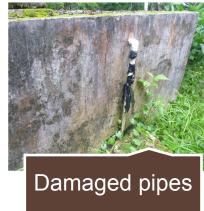

Infrastructure Evaluation



Spring Box

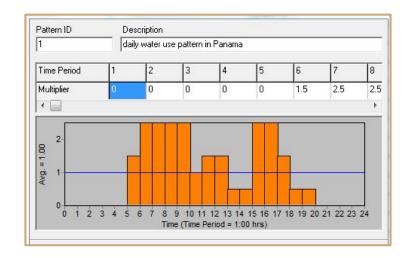
Spring Box design with key components labeled

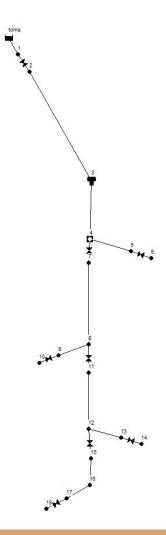
Storage Tank



Storage Tank Design with Key Components Labeled

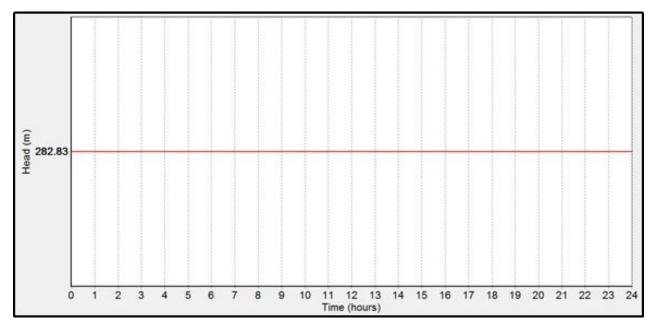
Sources of Contamination




Design

Hydraulic Model

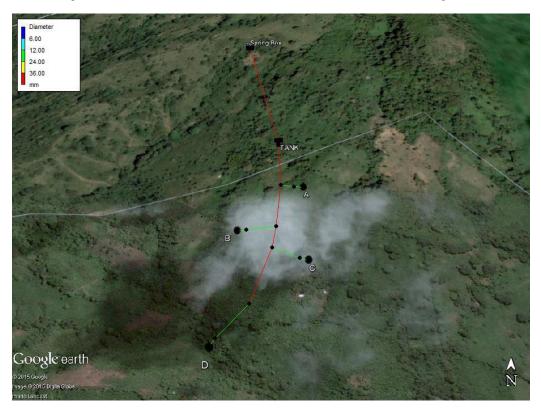
- Modelled using EPANET
- O Performance with four extensions
- O Determined a water demand pattern



EPANET Analysis

$$\frac{30 \ gal}{person*day}*\frac{8 \ people}{household}*\frac{3.79 \ L}{1 \ gal}*\frac{1 \ day}{24 \ hr}*\frac{1 \ hr}{60 \ min}*\frac{1 \ day}{24 \ hr}=0.63 \ \frac{Lpm}{household}$$

EPANET Graph of Water Level in Storage Tank



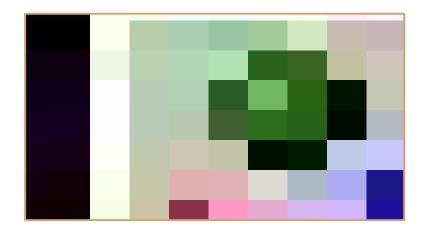
Static Pressures

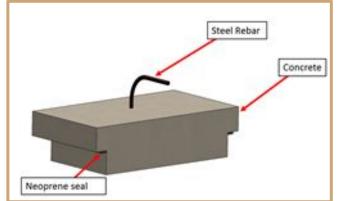
Node	Pressure
	PSI
Toma	0.0
3	1.2
4	18.2
5	28.2
6	26.8
7	19.7
8	78.0
9	85.1
10	83.7
11	79.4
12	90.8
13	87.9
14	86.5
15	92.2
16	110.7
17	157.6
18	156.2

Aerial View of Water Distribution System

Suggested Improvements

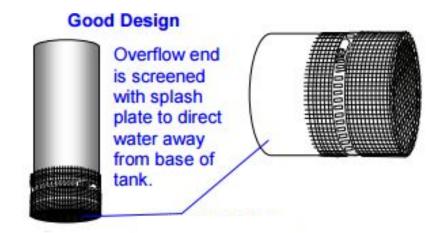
Chlorination System


- New chlorination system upstream of storage tank
- Oconcentration Time = 84 mg-min/L
 - Sufficient time to disinfect water from common pathogens



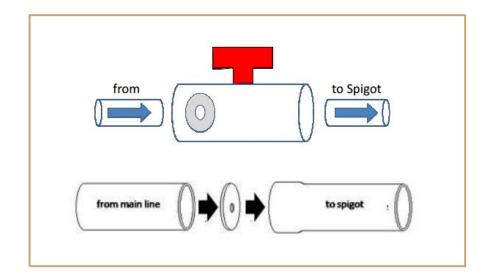
Redesign Lids

A Redesign lids of storage tank and spring box for a more secure fit



#24 Stainless Steel Mesh over outlet pipes

- Vent/Outflow screening #24 stainless steel mesh used to screen mesh overflow



EPA Region 8 Drinking Water Unit Tech Tips
Sanitary Protection of Drinking Water Storage Tanks:
24 Mesh Non-corrodible Screen

Pressure Reduction via Flow Reducing Discs

- Solution of the province of
- A Regulates flow with flow-reducing discs as opposed to widely varying pipe sizes

System Analysis with Flow Reducing Disks

Node		Number of discs to be added	Pressure with discs (psi)
10	83.7	1	58.7
14	86.5	1	61.5
18	156.2	4	56

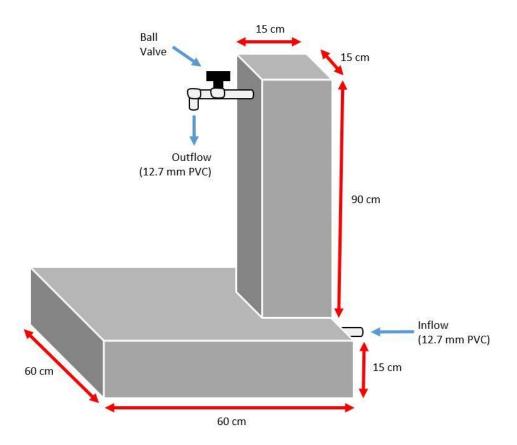
Calculations for Flow Reducing Discs

- b h is the change in pressure head desired in units of pascals
- θ is a coefficient given by Drakes report
- Q is the flow in m³/sec
- d is the diameter of the hole to be made in the flow reduction disc

$$\Delta h = \theta \frac{Q^2}{d^4}$$

Runoff Diversion

- Reason: Runoff water is from spring designated for cow use
- O Plan: Divert runoff with a trench and rip-rap reinforcement



Runoff Diversion

Before After Natural Spring Relocated Overflow Run off overflow water Rip-Rap Reinforcement Spring Box Spring Box Outlet pipes **Outlet pipes**

Tap Stands

Material and Labor Costs

Task		Price		
Piping Improvements	\$	4,350.00		
Chlorinator Improvement	\$	100.00		
Lid Improvements		255.00		
Tap Stands	\$	200.00		
Tools and Equipment		680.00		
Total	\$	5,585.00		

Task	Work hours	Lá	abor Value
Buy and Transport Materials	26	\$	208.00
Runoff Diversion	32	\$	256.00
Existing Storage Tank Updates	24	\$	192.00
Piping	108	\$	864.00
Total	190	\$	1,520.00

Construction Schedule

- δ 8 people working full time
 - o 30 hours/week
 - No work on Saturday and Sunday
- δ 2 month duration

Conclusion

- Data Collection
 Output
 Data Collection
 Data Co
 - Water quality
 - Watershed analysis
 - Infrastructure analysis
- ٥ Design
 - Improvements to current system
 - New chlorinator
 - New lids
 - Runoff diversion
 - Extension to three additional homes
 - Pressure reduction at taps
 - Tap stands

Thank you!

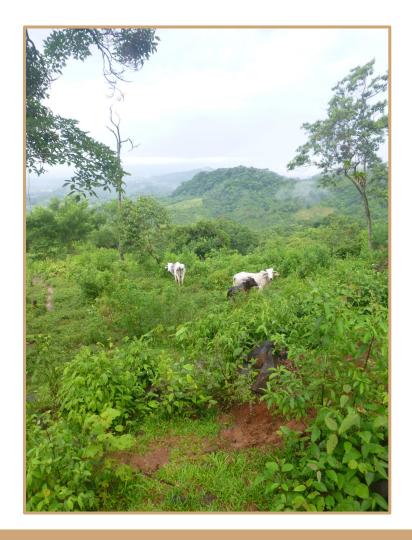
Acknowledgements

International Senior Design Advisors:

David Watkins, PhD, P.E.

Mike Drewyor, P.E., P.S.

<u>Quebrada Caracol Peace Corps Volunteer:</u> Leigh Miller


References

- Miller, Leigh. "Quebrada Caracol Analysis and Development Plan." (2015). Print.
- "3M™ Petrifilm™ Aerobic Count Plates." 3M™ Food Safety Website Product Catalog: N.p., 2015. Web. 20 Aug. 2015.3M.
- 3. "3M™ Petrifilm™ E.coli/Coliform Count Plates." 3M™ Food Safety Website Product Catalog: . N.p., 2015. Web. 20 Aug. 2015.
- 4. "3M™ Petrifilm™ Enterobacteriaceae Count Plates." 3M™ Food Safety Website Product Catalog: . N.p., 2015. Web. 20 Aug. 2015.
- 5. "Drinking Water Contaminants." United State Environmental Protection Agency. N.p., 29 Oct. 2014. Web. 16 Sept. 2015. http://water.epa.gov/drink/contaminants/#Microorganisms.
- "Shigella Food Poisoning," About Shigella. Ed. Marler Clark. N.p., n.d. Web. 28 Oct. 2015. http://www.about-shigella.com/.
- 7. "Typhoid Fever." Health Topics. World Health Organization, n.d. Web. 28 Oct. 2015. http://www.who.int/topics/typhoid fever/en/>.
- 8. Waite, Marilyn. Sustainable Water Resources in the Built Environment. N.p.: IWA Publishing, 2010. 162-64. Web. 16 Sept. 2015. https://books.google.com/books?

id=MeYmo5L6ecEC&pg=PA162&lpg=PA162&dq=panamanian+drinking+water+standards&source=bl&ots=mwwKdBy054&sig=vS_bNIMhaPRkJvBp1PySoR1gFAl&hl=en&sa=X&ved=0CD0Q6AEwBWoVChMlj72x08>.

- 9. "What Is a Watershed?" EPA. N.p., n.d. Web. 25 Aug. 2015. http://water.epa.gov/type/watersheds/whatis.cfm>.
- 10. EasyGPS. Computer software. EasyGPS. Vers. 5.48. TopoGrafix, 17 Aug. 2015. Web. 20 Aug. 2015. http://www.easygps.com/>.
- 11. "Watershed." 8.304753 N and 81.819357 W. Google Earth. March 5, 2006. August 20, 2015.
- 12. Environmental Protection Agency, 'EPA Region 8 Drinking Water Unit Tech Tips, Sanitary Protection of Drinking Water Storage Tanks: # 24 Mesh Non-corrodible Screen'. [Online] Available:http://www2.epa.gov/sites/production/files/2014-05/documents/tech_tip_24_mesh_screen.pdf. [Accessed: 28-Sep-2015].
- 13. Compatible Technology International, 'Effectiveness of CTI Water Chlorinator at controlling bacterial contamination in rural Nicaragua's drinking water', 2015. [Online]. Available: http://www.compatibletechnology.org/images/Nicaragua%20Water%20Study%20.pdf. [Accessed: 21- Sep- 2015].
- 14. Empresa de Transmision Electrica, S.A.. Unimos Panama con Energia, n.d. Web. 18 Nov. 2015. http://www.hidromet.com.pa/datos_diarios.php?estacion=6&mes=11&ano=2010>.
- 15. Rational Equation Calculator. LMNO Engineering, Research, and Software, Ltd., n.d. Web. 18 Nov. 2015. http://www.lmnoeng.com/Hydrology/rational.php>.

Questions?

